TEICHMÜLLER DILATIONS OF VARYING HUES: FROM COMPLEX TEICHMÜLLER THEORY TO IUT TO GT [JOINT WORK IN PROGRESS WITH TSUJIMURA/TSUJIMURA-SAÏDI] (2025 ICMS VERSION)

SHINICHI MOCHIZUKI (RIMS, KYOTO UNIVERSITY)

April 2025

https://www.kurims.kyoto-u.ac.jp/~motizuki/Tch%20Dilations%20of%20 Varying%20Hues%20(ICMS%202025%20version).pdf

- §1. Ring-theoretic interpretation of complex Teichmüller theory
- §2. The case of inter-universal Teichmüller theory (IUT)
- §3. Combinatorial function theory for idempotents
- §4. GT via combinatorial algebraization theory (CAT)

§1. Ring-theoretic interpretation of complex Teichmüller theory

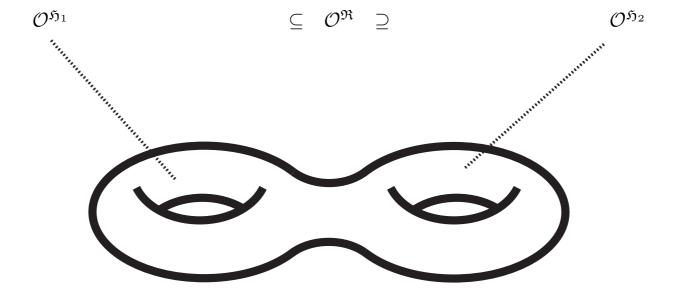
· Review of classical complex Teichmüller theory: (cf. [EssLgc], Example 3.3.1)

Recall the most fundamental deformation of complex structure in classical complex Teichmüller theory: for $\lambda \in \mathbb{R}_{>1}$,

Classical complex Teichmüller theory on Riemann surfaces: More generally, on a <u>single (oriented) topological surface</u> S, we can start with one <u>holomorphic structure</u> \mathfrak{H}_1 on S and a <u>square differential</u> relative to \mathfrak{H}_1 , then form the <u>Teichmüller dilation</u>, or <u>Teichmüller map</u>, obtained by deforming (i.e., in the fashion described above) the canonical holomorphic coordinate obtained by integrating the square root of the square differential (along paths) so as to obtain a <u>new holomorphic structure</u> \mathfrak{H}_2 .

Next, for i = 1, 2, write $\mathcal{O}^{\mathfrak{H}_i}$ for the sheaf of <u>holomorphic functions</u> on S, rel. to \mathfrak{H}_i ; $\mathcal{O}^{\mathfrak{R}}$ for the sheaf of (complex valued) <u>real analytic fns.</u> on S.

Here, we note that for connected open subsets $U \subseteq S$, $\mathcal{O}^{\mathfrak{R}}(U)$ is a <u>domain</u>, i.e., unlike the case with continuous or \mathcal{C}^{∞} -functions. That is to say, $\mathcal{O}^{\mathfrak{R}}$ is in some sense <u>close</u> to being like $\mathcal{O}^{\mathfrak{H}_i}$, for i = 1, 2, but still <u>suff'ly large</u> as to allow one to obtain <u>embeddings</u> in the <u>common container</u> $\mathcal{O}^{\mathfrak{R}}$:



· In the remainder of the present talk, we would like to consider various <u>arithmetic analogues</u> of the function theory discussed above in the complex case.

§2. The case of inter-universal Teichmüller theory (IUT)

- A more detailed exposition of IUT may be found in
 - · the <u>survey texts</u> [Alien], [EssLgc], as well as in
 - the <u>videos/slides</u> available at the following URLs: (cf. also my series of <u>DWANGO LECTURES</u> on IUT

— URLs available at request!):

https://www.kurims.kyoto-u.ac.jp/~motizuki/ExpHoriz IUT21/WS3/ExpHorizIUT21-InvitationIUT-notes.html

https://www.kurims.kyoto-u.ac.jp/~motizuki/ExpHoriz IUT21/WS4/ExpHorizIUT21-IUTSummit-notes.html

Let R be an <u>integral domain</u> (e.g., $\mathbb{Z} \subseteq \mathbb{Q}$) equipped with the action of a <u>group</u> G, $(\mathbb{Z} \ni)$ $N \ge 2$. For simplicity, assume that $N = 1 + \cdots + 1 \ne 0 \in R$; R has <u>no nontrivial N-th roots of unity</u>. Write $R^{\triangleright} \subseteq R$ for the <u>multiplicative monoid</u> $R \setminus \{0\}$. Then let us observe that the <u>N-th power map</u> on R^{\triangleright} determines an <u>isomorphism of multiplicative monoids</u> equipped with actions by G

$$G \curvearrowright R^{\triangleright} \stackrel{\sim}{\to} (R^{\triangleright})^N (\subseteq R^{\triangleright}) \curvearrowleft G$$

that does <u>not arise</u> from a <u>ring homomorphism</u>, i.e., it is clearly <u>not compatible</u> with <u>addition</u> (cf. our assumption on N!).

· Let ${}^{\dagger}R$, ${}^{\ddagger}R$ be <u>two distinct copies</u> of the integral domain R, equipped with respective actions by <u>two distinct copies</u> ${}^{\dagger}G$, ${}^{\ddagger}G$ of the group G. We shall use similar notation for objects with labels " † ", " ‡ " to the previously introduced notation. Then one may use the <u>isomorphism of multiplicative monoids</u> arising from the <u>N-th power map</u> discussed above to <u>glue</u> together

$${}^{\dagger}G \ \curvearrowright \ {}^{\dagger}R \supseteq ({}^{\dagger}R^{\rhd})^N \quad \stackrel{\sim}{\leftarrow} \quad {}^{\ddagger}R^{\rhd} \subseteq {}^{\ddagger}R \ \curvearrowleft \ {}^{\ddagger}G$$

... where the notion of a <u>gluing</u> may be understood

· as a <u>quotient set</u> via identifications, or (preferably)

· as an <u>abstract diagram</u> (cf. graphs of groups/anabelioids!)

the $\underline{ring} \,^{\dagger}R$ to the $\underline{ring} \,^{\dagger}R$ along the $\underline{multiplicative\ monoid}$ $(^{\dagger}R^{\triangleright})^N \stackrel{\sim}{\leftarrow} {}^{\dagger}R^{\triangleright}$. This gluing is $\underline{compatible}$ with the respective actions of $^{\dagger}G$, $^{\dagger}G$ relative to the isomorphism $^{\dagger}G \stackrel{\sim}{\rightarrow} {}^{\dagger}G$ given by forgetting the labels " † ", " † ", but, since the N-th power map is $\underline{not\ compatible}$ with $\underline{addition}$ (!), this isomorphism $^{\dagger}G \stackrel{\sim}{\rightarrow} {}^{\dagger}G$ may be regarded either as an isomorphism of (" \underline{coric} ", i.e., $\underline{invariant}$ with respect to the N-th power map) $\underline{abstract\ groups}$ (cf. the notion of " $\underline{inter-universality}$ ", as discussed in [EssLgc], §3.2, §3.8!) or as an isomorphism of groups equipped with actions on certain $\underline{multiplicative\ monoids}$, but \underline{not} as an isomorphism of (" \underline{Galois} " — cf. the $\underline{inner\ automorphism\ indeterminacies}$ of SGA1!) groups equipped with actions on $\underline{rings/fields}$.

- The problem of <u>describing (certain portions of the) ring structure</u> of ${}^{\dagger}R$ in terms of the <u>ring structure</u> of ${}^{\dagger}R$ in a fashion that is <u>compatible</u> with the <u>gluing</u> and via a <u>single</u> algorithm that may be applied to the <u>common</u> (cf. <u>logical AND \land !) <u>glued data</u> to reconstruct <u>simultaneously</u> (certain portions of) the ring structures of <u>both</u> ${}^{\dagger}R$ and ${}^{\dagger}R$, up to suitable relatively mild <u>indeterminacies</u> (cf. the theory of <u>crystals</u>!) seems (at first glance/in general) to be <u>hopelessly intractable</u> (cf. the case of \mathbb{Z})!</u>
 - ... where we note that here, considering <u>portions</u> is important because we want to <u>decompose</u> the above diagram up into <u>pieces</u> so that we can consider <u>symmetry</u> properties involving these pieces!

One well-known elementary example: when N = p, working $\underline{modulo\ p}$ (cf. $\underline{indeterminacies}$, analogy with $\underline{crystals}$!), where there is a $\underline{common\ ring\ structure}$ that is $\underline{compatible}$ with the $\underline{p-th\ power\ map}$!

Another important example: Faltings' proof of <u>invariance</u> of <u>height</u> of elliptic curves under <u>isogeny</u>, under the assumption of the existence of a <u>global multiplicative subspace</u> (cf. [ClsIUT], §1; [EssLgc], Example 3.2.1)!

- ... This is precisely what is <u>achieved in IUT</u> by means of the <u>multiradial representation for the Θ -pilot</u> via
- · <u>anabelian geometry</u> (cf. the <u>abstract groups</u> $^{\dagger}G$, $^{\ddagger}G!$);
- the p-adic/complex logarithm, theta functions;
- · <u>Kummer theory</u>, to relate <u>Frob.-/étale-like</u> versions of objects.
- $Main\ point$:

The <u>multiplicative monoid</u> and <u>abstract group</u> structures (but <u>not</u> the ring structures!) are <u>common</u> (cf. "<u>logical AND \land !</u>") to \dagger , \ddagger and can be used as the <u>input data</u> for an algorithm to construct the <u>multirad. rep. for the Θ -pilot</u>, i.e., a <u>common container</u> for the distinct <u>ring strs.</u> (i.e., "<u>arith. hol. strs.</u>") \dagger , \ddagger

$$^{\dagger}R \subseteq \left(\text{multirad. rep. for the }\Theta\text{-pilot}\right) \supseteq {^{\ddagger}R}$$

When $R = \mathbb{Z}$ (or, in fact, more generally, the <u>ring of integers</u> " \mathcal{O}_F " of a number field F — cf. the multiplicative <u>norm map</u> $N_{F/\mathbb{Q}}: F \to \mathbb{Q}$), one may consider the "<u>height/log-volume</u>"

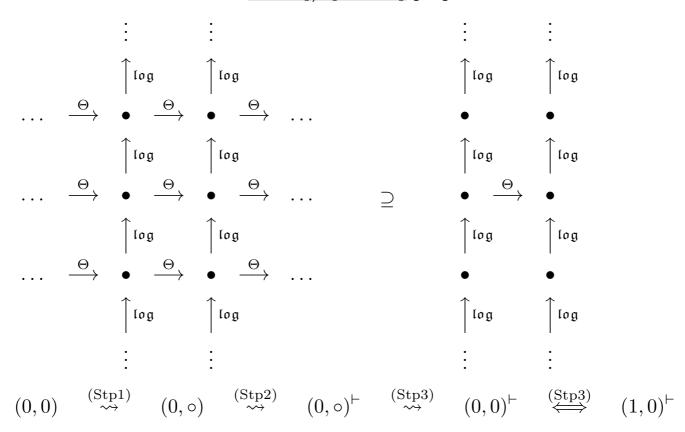
$$\log(|x|) \in \mathbb{R}$$

for $0 \neq x \in \mathbb{Z}$. Then the <u>N-th power map</u> of (i), (ii) corresponds, after passing to <u>heights</u>, to <u>multiplying real numbers by N</u>; the <u>multiradial algorithm</u> corresponds to saying that the height is <u>unaffected (up to a mild error term!)</u> by multiplication by N, hence that the <u>height is bounded!</u>

· In the case of IUT, the <u>multirad. rep. for the Θ-pilot</u> is obtained by means of a sort of "<u>analytic continuation</u>" along a certain "<u>infinite H</u>" of the <u>log-theta-lattice</u> [cf. the discussion surrounding [EssLgc], §3.3, (InfH)]

... where

- the Θ -link between distinct ring strs. "•" corresponds to the N-th power map discussed in the present $\S 2$, while the $\underline{\log}$ -link locally at nonarchimedean valuations looks like the p-adic logarithm between distinct ring strs. "•";
- · the <u>descent operations</u> revolve around the establishment of certain <u>coricity/symmetry</u> properties.



- which involves a gradual introduction via "<u>descent</u>" operations of "<u>fuzzifications</u>", corresponding to <u>indeterminacies</u> [cf. the discussion of [EssLgc], $\S 3.10$].
- At a more technical level, the <u>multirad</u>. <u>rep</u>. <u>for the Θ-pilot</u> is obtained by constructing <u>invariants</u> with respects to the <u>log-link</u>, which has the effect of <u>juggling addition and multiplication</u> i.e., juggling the <u>dilated</u> and <u>non-dilated</u> portions of the <u>ring strs</u>. and, as a result, effects a sort of "<u>miraculous rotation</u>" (the discussion of [EssLgc], §3.11)

of the

- · "<u>mysterious log-volume-dilating Θ -link gap</u>" (between the domain/codomain of the Θ -link) onto the
- · "<u>harmless log-volume-preserving log-link gap</u>" (between the domain/codomain of the log-link)!

§3. Combinatorial function theory for idempotents (cf. [ArGT], §1)

· The following elementary result in <u>combinatorial function theory</u> concerning <u>idempotents</u> is the <u>key technical lemma</u> that underlies <u>combinatorial algebraization theory (CAT)</u>:

Let

- \cdot K be a perfect field;
- \cdot X an affine hyperbolic curve over K;
- · $X^{\operatorname{act}} \subseteq X(\overline{K})$ an infinite subset;
- · $Y \to X$ a finite étale Galois covering of hyperbolic curves over K, whose Galois group we denote by Q.

Write

$$R_X \subseteq R_Y \subseteq \operatorname{Fn}(Y^{\operatorname{act}}, \overline{K})$$

for the sub-K-algebras of the \overline{K} -algebra $\operatorname{Fn}(Y^{\operatorname{act}}, \overline{K})$ of (arbitrary set-theoretic) \overline{K} -valued functions on $Y^{\operatorname{act}} \stackrel{\operatorname{def}}{=} X^{\operatorname{act}} \times_{X(\overline{K})} Y(\overline{K})$ determined, via evaluation of functions at points $\in Y^{\operatorname{act}}$, by X and Y, respectively. Let A be a finite set and, for each $\alpha \in A$,

$$R_X \subseteq R_\alpha \subseteq \operatorname{Fn}(Y^{\operatorname{act}}, \overline{K})$$

a sub-K-algebra of $\operatorname{Fn}(Y^{\operatorname{act}}, \overline{K})$ that contains R_X , is isomorphic to R_Y as an R_X -algebra, and is stabilized by the natural action of Q on $\operatorname{Fn}(Y^{\operatorname{act}}, \overline{K})$ (induced by the natural action of Q on Y^{act}) in such a way that this natural action induces an isomorphism $Q \xrightarrow{\sim} \operatorname{Gal}(R_{\alpha}/R_X)$. Write

$$R_A \subseteq \operatorname{Fn}(Y^{\operatorname{act}}, \overline{K})$$

for the sub- R_X -algebra of $\operatorname{Fn}(Y^{\operatorname{act}}, \overline{K})$ generated by the sub- R_X -algebras R_{α} , as α ranges over the elements of A. Thus, one verifies immediately that, after possibly removing finitely many elements of X^{act} from X^{act} , we may assume without loss of generality that R_A is an R_X -flat quotient of the tensor product

$$R_{\otimes} \stackrel{\text{def}}{=} \otimes_{\alpha \in A} R_{\alpha}$$

of R_X -algebras, hence is *finite étale* over R_X . In particular, $\operatorname{Spec}(R_A)$ has only finitely many connected components. Write

I

for the finite set of connected components of $\operatorname{Spec}(R_A)$;

$$E \stackrel{\mathrm{def}}{=} \{\epsilon_{i_0}\}_{i_0 \in I}$$

for the set of idempotents of R_A corresponding to the elements of I (i.e., idempotents whose support consists of precisely one connected component of $\operatorname{Spec}(R_A)$). Thus, Q acts naturally on R_A , R_{\otimes} , and E, and one verifies

immediately that one may think of E as a set of mutually orthogonal idempotents of R_A of maximal cardinality. Then there exists an infinite subset $X^{\text{act},\dagger} \subseteq X^{\text{act}}$ such that, if we write

$$R_X^{\dagger}, \ R_Y^{\dagger}, \ R_A^{\dagger}, \ E^{\dagger,0} \subseteq \operatorname{Fn}(Y^{\operatorname{act},\dagger}, \overline{K})$$

for the subsets of the set $\operatorname{Fn}(Y^{\operatorname{act},\dagger},\overline{K})$ of (arbitrary set-theoretic) \overline{K} -valued functions on $Y^{\operatorname{act},\dagger} \stackrel{\text{def}}{=} X^{\operatorname{act},\dagger} \times_{X(\overline{K})} Y(\overline{K})$ determined, via evaluation of functions at points $\in Y^{\operatorname{act},\dagger}$, by R_X , R_Y , R_A and E, respectively, then the subset $E^{\dagger} \subseteq E^{\dagger,0}$ of nonzero elements of $E^{\dagger,0}$ satisfies the following properties:

- (a) The set E^{\dagger} is a set of mutually orthogonal idempotents of R_A^{\dagger} of maximal cardinality, i.e., it is in natural bijective correspondence with the set of connected components of $\operatorname{Spec}(R_A^{\dagger})$.
- (b) The natural action of Q on E^{\dagger} is *transitive*. In particular, the cardinality of E^{\dagger} divides the order of Q.
- (c) Let $H \subseteq Q$ be the stabilizer of an element of E^{\dagger} . (Thus, the Q-conjugacy class of H is independent of the choice of an element of E^{\dagger} .) Then for any $x \in X^{\text{act},\dagger}$, the intersections with the Q-torsor

$$Y^{\mathrm{act},\dagger}|_x \stackrel{\mathrm{def}}{=} Y^{\mathrm{act},\dagger} \times_{X^{\mathrm{act},\dagger}} \{x\} \subseteq Y^{\mathrm{act},\dagger}$$

of the supports of the elements of E^{\dagger} may be described, for a suitable choice of $y \in Y^{\text{act},\dagger}|_x$, as the subsets $q \cdot H \cdot y \subseteq Y^{\text{act},\dagger}|_x$, as q ranges over the elements of Q.

Proof (sketch) of (b):

Write

$$E_Q$$

for the set of Q-orbits of E. Thus, since E consists of mutually orthogonal idempotents, each element of E_Q may be thought of as a Q-invariant idempotent of R_A (i.e., by adding up the elements in the corresponding Q-orbit of E). Moreover, it follows immediately that the idempotents associated to elements of E_Q are also mutually orthogonal. Next, since the idempotents of E_Q are Q-invariant, it follows from the structure of $\operatorname{Fn}(Y^{\operatorname{act}}, \overline{K})$ that they may be thought of as idempotents of $\operatorname{Fn}(X^{\operatorname{act}}, \overline{K})$. Since E_Q is a finite set, by considering the supports of these idempotents of $\operatorname{Fn}(X^{\operatorname{act}}, \overline{K})$, we thus obtain a finite partition of X^{act} . Thus, since any finite partition of an infinite set as a finite disjoint union of subsets contains at least one infinite subset, we conclude that there exists a subset

$$X^{\mathrm{act},\dagger} \subseteq X^{\mathrm{act}}$$

of infinite cardinality such that $X^{\text{act},\dagger}$ is the support in X^{act} of some element $\epsilon_Q \in E_Q$. In particular, it follows from the definition of $X^{\text{act},\dagger}$ that an element $\epsilon \in E$ belongs to the Q-orbit ϵ_Q if and only if ϵ restricts to an element $\epsilon \in E^{\dagger} \subseteq E^{\dagger,0}$. This equivalence immediately implies property (b).

§4. GT via combinatorial algebraization theory (CAT) (cf. [CbGT]; [CbGal]; [ArGT]; [ArMCG])

- · <u>Combinatorial algebraization theory (CAT)</u> may be understood as "<u>a Teichmüller theory</u>" analogous to
 - \cdot <u>CTch</u> (i.e., complex Teichmüller theory cf. §1) and
 - · <u>IUT</u> (cf. §2)

for studying the conjugates of the image of

$$G_{\mathbb{Q}}, \qquad \Pi_{\mathcal{M}_{g,r/\mathbb{Q}}}$$

inside

$$\mathrm{GT} \subseteq \mathrm{Out}(\Pi_X), \quad \mathrm{Out}(\Pi_X)$$

- where X denotes a hyperbolic curve over $\overline{\mathbb{Q}}$ of type (0,3) or arbitrary (g,r) (such that 2g-2+r>0).
- · The starting point of CAT involves considering <u>distinct conjugates</u> of $G_{\mathbb{Q}}$ (or $\operatorname{Im}(\Pi_{\mathcal{M}_{q,r/\mathbb{Q}}})$) inside $\operatorname{GT}(\ni \sigma, \tau)$ (or $\operatorname{Out}(\Pi_X)$ $(\ni \sigma, \tau)$)

$$G_{\mathbb{Q}}^{\sigma}$$
 \subseteq GT \supseteq $G_{\mathbb{Q}}^{\tau}$ $\operatorname{Im}(\Pi_{\mathcal{M}_{g,r/\mathbb{Q}}})^{\sigma}$ \subseteq $\operatorname{Out}(\Pi_X)$ \supseteq $\operatorname{Im}(\Pi_{\mathcal{M}_{g,r/\mathbb{Q}}})^{\tau}$

... that is to say, <u>distinct ring theories</u> that are related by a <u>mysterious non-ring-theoretic</u> — i.e., <u>purely combinatorial/group-theoretic</u> — <u>link</u>, where the <u>non-algebraicity</u> of $\sigma \cdot \tau^{-1}$ plays the role of the <u>complex dilations</u> of §1, or, alternatively, the <u>N-th power map/ Θ -link</u> of §2.

· In the case of CAT, the <u>analysis of idempotents</u> of §3 — i.e., roughly speaking,

$$K_X^{\sigma} \subseteq \prod_{\mathfrak{p}} \operatorname{Fn}(\{ \operatorname{pts. of} X \text{ over } \mathfrak{p} \}, \operatorname{res. field of } \mathfrak{p}) \supseteq K_X^{\tau}$$

- where K_X denotes the function field of X, and \mathfrak{p} runs over a Zariski dense set of finite primes of $\overline{\mathbb{Q}}$ or $\overline{\mathbb{Q}}$ -points of $\mathcal{M}_{g,r/\mathbb{Q}}$ that arise from $\underline{Hurwitz\ schemes}$ yields a " $\underline{miraculous\ rotation}$ " from the
 - · "<u>mysterious gap</u>" between the <u>distinct ring theories</u> associated to σ , τ -conjugates onto the
 - "harmless gap between Q-conjugates" where Q is a finite, center-free characteristic quotient of Π_X , and we note that such quotients are <u>cofinal</u>! provided by the <u>transitivity</u> property (b) of the Lemma of §3
- ... cf. the ring-th'ic interpretation of <u>Teichmüller maps</u> in §1; the <u>multiradial representation</u>/"<u>miraculous rotation</u>"

$$\Theta$$
-link " \curvearrowright " log-link

of §2.

... Also, we note that just as in the case with the <u>log-link</u> of IUT — where we recall that forming <u>invariants</u> with respect to the <u>log-link</u> constitutes the <u>key step</u> in the construction of the <u>multirad. representation</u> of IUT — the "<u>miraculous rotation</u>" of CAT involves a rotation

$$\underline{addition}$$
 " \boxminus " " $\overset{\dots}{\sim}$ " $\underline{multiplication}$ " \boxtimes ",

i.e., at the level of ring structures between

- · " \oplus " (cf. <u>distinct connected components</u> corresponding to <u>non-algebraic</u> $\sigma \cdot \tau^{-1}!$) and
- · " \otimes " (cf. the construction of $\S 3$, which is closely related to the classical notion of the <u>Weil restriction</u>).

- · One $\underline{important\ technical\ tool}$ in CAT is
 - · <u>Chebotarev-type results ("Chb")</u> over <u>number fields</u>, as well as over <u>function fields over finite fields</u> (in the case of GT), and the
 - · <u>Hilbertian property ("Hlb")</u> applied to <u>rational varieties</u> over <u>number fields</u> (in the case of $Out(\Pi_X)$)

— which are used to compute the <u>multiplicative</u> " \otimes " gp. actions (i.e., group actions on tensor products as in §3) since such group actions can only be related directly to the natural <u>additive</u> " \oplus " <u>scheme-theoretic</u> group actions that arise naturally from Galois groups (or étale fundamental groups) in scheme theory at the <u>decomposition subgroups</u> associated to the points " \mathfrak{p} " appearing in the above product

$$\prod_{\mathfrak{p}}$$

(i.e., finite primes of $\overline{\mathbb{Q}}$ or $\overline{\mathbb{Q}}$ -points of $\mathcal{M}_{g,r/\mathbb{Q}}$ arising from certain $\underline{Hurwitz\ schemes}$).

· The <u>combinatorial anabelian geometry</u> developed in [CbGT], [CbGal] (especially, natural isomorphisms

$$\operatorname{Out}^{\mathsf{F}}(\Pi_{X_{n+1}}) \stackrel{\sim}{\to} \operatorname{Out}^{\mathsf{F}}(\Pi_{X_n})$$

of fiber subgroup-preserving outer autom. gps. of <u>configuration</u> <u>space groups</u> associated to X for sufficiently large n) — where we note that the passage $X_n \rightsquigarrow X_{n+1}$ corresponds, at "<u>toral</u>" (i.e., "<u>multiplicative</u>"!) nodes, to a passage to <u>tripods</u> (i.e., which involve "<u>additive</u>" symmetries $t \mapsto 1-t$), hence may be thought of as a sort of <u>combinatorial</u> analogue of the <u>p-adic logarithm</u>! (cf. the vertical columns of \log -links in IUT!) — constitutes another <u>crucial technical tool</u> in CAT

- ... cf. the fundamental role played throughout IUT by log-links, absolute p-adic anabelian geometry!
- · The technique of <u>cyclotomic combinatorial Belyi cuspidalizations</u> (cf. [CbGal])

$$U \hookrightarrow X$$

$$\downarrow^{(-)^N}$$

$$X$$

also plays an <u>important role</u> in CAT

... cf. the fundamental role played throughout IUT by the <u>étale theta fn./elliptic cuspidalizations!</u>

 $\cdot\,$ The theory discussed above may be summarized as follows:

$\underline{\mathbb{C}\mathrm{Tch}}$	<u>IUT</u>	$\frac{\mathrm{CAT\ for}}{\mathrm{GT,\ Out}(\Pi_X)}$
distinct holomorphic structures $\mathcal{O}^{\mathfrak{H}_i}$, for $i=1,2,$ on same underlying top. surface	distinct ring/arith. hol. structures on opposite sides of the Θ-link	$egin{aligned} extbf{distinct} \ extbf{ring structures} \ extbf{corresponding to} \ extbf{distinct} \ extbf{conjugates} \ extbf{of} \ G_{\mathbb{Q}} \ ext{or} \ \Pi_{\mathcal{M}_g,r/\mathbb{Q}} \ ext{inside} \ ext{GT or} \ ext{Out}(\Pi_X) \end{aligned}$
embedding of $\mathcal{O}^{\mathfrak{H}_i}$'s into common container/ domain $\mathcal{O}^{\mathfrak{R}}$ via Teichmüller maps	multiradial rep., up to mild indets., yields common container for distinct ring/arith. hol. strs. via miraculous rotation Θ-link " \(\cap \)" log-link involving log-invars. via a rotation \(\subseteq \)" \(\mathred{\pi} \), absolute p-adic anab. geo. (cf., especially, (Ind3)), étale theta fn./ elliptic cuspidalizations	embedding of distinct ring strs. into $\prod_{\mathfrak{p}}\operatorname{Fn}(-,-) \text{ via}$ analysis of idems./Chb/Hlb yields a miraculous rotation $\operatorname{GT},\operatorname{Out}(\Pi_X)\text{-cnjs.}$ "\(\sigma\)" \(Q\text{-cnjs.} \) via a rotation $\otimes \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

References

[IUAni1] E. Farcot, I. Fesenko, S. Mochizuki, *The Multiradial Representation of Inter-universal Teichmüller Theory*, animation available at the following URL:

https://www.kurims.kyoto-u.ac.jp/~motizuki/IUT-animation-Thm-A-black.wmv

[IUAni2] E. Farcot, I. Fesenko, S. Mochizuki, Computation of the log-volume of the q-pilot via the multiradial representation, animation available at the following URL:

https://www.kurims.kyoto-u.ac.jp/~motizuki/2020-01%20Computation%20of%20q-pilot%20(animation).mp4

- [IUTchI] S. Mochizuki, Inter-universal Teichmüller Theory I: Construction of Hodge Theaters, *Publ. Res. Inst. Math. Sci.* **57** (2021), pp. 3-207.
- [IUTchII] S. Mochizuki, Inter-universal Teichmüller Theory II: Hodge-Arakelov-theoretic Evaluation, *Publ. Res. Inst. Math. Sci.* **57** (2021), pp. 209-401.
- [IUTchIII] S. Mochizuki, Inter-universal Teichmüller Theory III: Canonical Splittings of the Log-theta-lattice, *Publ. Res. Inst. Math. Sci.* **57** (2021), pp. 403-626.
- [IUTchIV] S. Mochizuki, Inter-universal Teichmüller Theory IV: Log-volume Computations and Set-theoretic Foundations, *Publ. Res. Inst. Math. Sci.* **57** (2021), pp. 627-723.
 - [Alien] S. Mochizuki, The Mathematics of Mutually Alien Copies: from Gaussian Integrals to Inter-universal Teichmüller Theory, Inter-universal Teichmuller Theory Summit 2016, RIMS Kōkyūroku Bessatsu B84, Res. Inst. Math. Sci. (RIMS), Kyoto (2021), pp. 23-192; available at the following URL:

https://www.kurims.kyoto-u.ac.jp/~motizuki/Alien%20Copies,%20Gaussians,%20and%20Inter-universal%20Teichmuller%20Theory.pdf

- [EssLgc] S. Mochizuki, On the essential logical structure of inter-universal Teichmüller theory in terms of logical AND "\"\"\"/logical OR "\" " relations: Report on the occasion of the publication of the four main papers on inter-universal Teichmüller theory, preprint available at the following URL:
 - https://www.kurims.kyoto-u.ac.jp/~motizuki/Essential%20Logical%20Structure%20of%20Inter-universal%20Teichmuller%20Theory.pdf
- [CbGT] Y. Hoshi, A. Minamide, S. Mochizuki, Group-theoreticity of Numerical Invariants and Distinguished Subgroups of Configuration Space Groups, *Kodai Math. J.* **45** (2022), pp. 295 348.

- [CbGal] Y. Hoshi, S. Mochizuki, S. Tsujimura, Combinatorial construction of the absolute Galois group of the field of rational numbers, RIMS Preprint 1935 (December 2020), to appear in J. Math. Sci. Univ. Tokyo.
- [ArGT] S. Mochizuki, S. Tsujimura, On the Arithmeticity of the Gro-thendieck-Teichmüller Group, manuscript in preparation.
- [ArMCG] S. Mochizuki, S. Tsujimura, M. Saïdi, On the Arithmeticity of the Mapping Class Group, manuscript in preparation.

